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Abstract. We give some new characterizations of semisimple alterna-

tive algebras among the pseudo-Euclidean alternative algebras. These

charcterizations are based on the index of a pseudo Euclidean alterna-

tive algebra, operators of Casimir type and representations of alternative

algebras.
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1. Introduction

In this work, we consider finite-dimensional alternative algebras over a com-

mutative field F of characteristic 0. An alternative algebra A is called pseudo-

Euclidean if it is endowed with a nondegenerate symmetric bilinear form ψ

which is invariant, that is,

ψ(xy, z) = ψ(x, yz), ∀x, y, z ∈ A.

A nondegenerate symmetric invariant bilinear form ψ on A is called an invariant

scalar product. Such bilinear forms on non-associative algebras have a great

value in the study of their structures. For example, the Killing form plays a key

role in the theory of semi-simple Lie algebras, Albert forms in the case of semi-

simple Jordan algebras and trace form in the case of semi-simple alternative
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108 S. Boulmane

algebras. Let us denote by F(A) the linear space of all symmetric invariant

bllinear forms on A and let B(A) be the subspace of F(A) spanned by the set

of invariant scalar products on A. We will say that A admits a unique (up to

a constant) quadratic structure if B(A) is one-dimensional.

I. Bajo and S. Benayadi [2] proved that any Lie algebra g over F admitting a

unique up to a constant quadratic structure is necessarily a simple Lie algebra

and if the field F is algebraically closed, such condition is also sufficient. After-

ward, A. Baklouti and S. Benayadi[1] generalized this result in case of Jordan

algebras and gived some new charcterizations of semisimple Jordan algebras

among the pseudo-euclidean Jordan algebras. Thus, the problem of charac-

terizing alternative algebras with a unique quadratic structure and semisimple

alternative algebras arises naturally, since alternative algebras are intimately

linked with Jordan algebras and Lie algebras.

Our paper is organized as follows : The first section, we give new charac-

terizations of semisimple alternative algebras by using the index of a pseudo

Euclidean alternative algebra A noted ind(A), that is the dimension of B(A).
The next one, will be devoted to characterize semisimple alternative algebras

by using an operator of a pseudo-Euclidean alternative algebra called operator

of Casimir type. In the last part, we will use bi-representations of alternative

algebras to give another caracterization of semisimple alternative algebras.

2. Characterization via the index of pseudo Euclidean

alternative algebras

In this section, we recall some definitions and concepts of alternative alge-

bras and pseudo-Euclidean alternative algebras. Then, we give new charac-

terizations of semisimple alternative algebras by using the index of a pseudo

Euclidean alternative algebra. For a general theory about alternative algebras

(see. [5, 6]).

Definition 2.1. Let A be a non-associative algebra (i.e. not necessarily asso-

ciative), A is called alternative if:

x2y = x(xy) and yx2 = (yx)x, ∀x, y ∈ A.

The left and right equations are known, respectively, as the left and right

alternative laws. They are equivalent in terms of left and right multiplications

to:

Lx2 = L2
x and Rx2 = R2

x, ∀x ∈ A.

Definition 2.2. Let A be an alternative algebra and ψ : A × A −→ F be a

bilinear form. ψ will be called:

(1) symmetric if ∀x, y ∈ A, ψ(x, y) = ψ(y, x);
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New Characterizations of Semisimple Alternative Algebras 109

(2) nondegenerate if ψ(x, y) = 0, ∀y ∈ A⇒ x = 0 and if ψ(x, y) = 0, ∀x ∈
A⇒ y = 0;

(3) invariant if ∀x, y, z ∈ A ψ(xy, z) = ψ(x, yz).

If ψ is symmetric, nondegenerate and invariant, (A,ψ) will be called a pseudo-

Euclidean alternative algebra and ψ will be called an invariant scalar product.

Now we recall the bilinear form on an alternative algebra which characterizes

the semisimplicity case. This form plays the role of the Killing form in the case

of Lie algebras. The following Proposition can be found in ([5], p. 44).

Proposition 2.3. Let A be an alternative algebra and ψ : A × A → F be the

bilinear form defined by:

ψ(x, y) = tr (RxRy), ∀x, y ∈ A,

where tr (RxRy) is the trace of RxRy.

The radical of A is the radical of the form ψ. (i.e Rad(A) = {x ∈ A, ψ(x, y) =

0, ∀y ∈ A}. This form is called the trace form on A.

Corollary 2.4. Let A be an alternative algebra, then A is semisimple (that is

the radical of A is 0) if and only if the trace form of A is nondegenerate.

Since the trace form of an alternative algebra is invariant, we can deduce

from Corollary (2.4) that any semisimple alternative algebra is pseudo-Euclidean.

Another interesting pseudo-Euclidean alternative algebra is giving as follows:

Let A be an alternative algebra and A∗ be the dual vector space of the

underlying vector space of A. An easy computation prove that the following

product ⋆ define an alternative algebra structure on the vector space Ã =

A⊕A∗:

(x+ f) ⋆ (y + h) := xy + f ◦ Ly + h ◦Rx, ∀(x, f), (y, h) ∈ A⊕A∗.

Moreover, if we consider the bilinear form ψ : (A⊕A∗)× (A⊕A∗) → F defined

by:

ψ(x+ f, y + h) = f(y) + h(x), ∀(x, f), (y, h) ∈ A⊕A∗,

then (A ⊕ A∗, ψ) is a pseudo-Euclidean alternative algebra called the trivial

T ∗-extension of A and noted by T ∗
0A ([4]). For more details about pseudo-

Euclidean alternative algebras see [3].

Definition 2.5. Let (A,ψ) be a pseudo-Euclidean alternative algebra and I

an arbitrary vector subspace of A.

(a): I is called an ideal (resp. a subalgebra) of A if and only if AI+IA ⊂ I

(resp. II ⊂ I ).

(b): I is called nondegenerate if the restriction of ψ to I× I is nondegen-

erate, otherwise, it is called degenerate.
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110 S. Boulmane

(c): We say that (A,ψ) is irreducible if every ideal of A is degenerate.

(d): A is called simple if it has no nonzero proper ideal.

Definition 2.6. Let (A,ψ) be a pseudo-Euclidean alternative algebra. The

dimension of B(A) is called the index of A and will be denoted by ind(A).

Lemma 2.7. If A is an alternative algebra admitting an invariant scalar prod-

uct, then B(A) = F(A).

Proof. Let ψ be an invariant scalar product on A and ϕ ∈ F(A). Let M(ψ)

and M(ϕ) be associated matrices of ψ and ϕ in some fixed basis of A. Then,

for λ ∈ F the determinant det(M(ϕ)−λM(ψ)) is a polinomial in λ. Hence, we

can find λ0 ∈ F such that det(M(ϕ)− λ0M(ψ)) ̸= 0. This proves that ϕ− λ0ψ

is nondegenerate and thus ϕ = (ϕ− λ0ψ) + λ0ψ is nondegenerate. □

Proposition 2.8. Let F be an algebraically closed field of characteristic zero

and let A be a simple alternative algebra. If ψ1, ψ2 are two invariant scalar

products on A, then there is a nonzero scalar λ such that ψ1 = λψ2, that is,

ind(A) = 1.

Proof. Since A is simple alternative algebra, then the trace form ψ of A is

nondegenerate.

If we consider φ another invariant scalar product on A, then there exists an

endomorphism D of A such that:

ψ(x, y) = φ(D(x), y), ∀x, y ∈ A.

Let λ ∈ F and φ′ be the bilinear form of A defined by φ′(x, y) = φ(D(x) −
λx, y), ∀x, y ∈ A. Since D has at least one eigenvalue, we can suppose λ an

eigenvalue ofD and v is an eigenvector for λ, then v ∈ A⊥ = {x ∈ A; φ′(x, y) =

0, ∀y ∈ A}, it follows that A⊥ ̸= {0}. Moreover, since φ′ is invariant on A,

then A⊥ is an ideal of A. Therefore, A⊥ = A, i.e, D(x) = λx, ∀x ∈ A. Then,

ψ(x, y) = λφ(x, y), ∀x, y ∈ A. □

Example 2.9. Let F be an algebraically closed field of characteristic zero and O
be the Cayley-Dickson algebra over F. It is known that O is a simple alternative

algebra, then ind(O) = 1.

Lemma 2.10. Let A be an alternative algebra, if ind(A) = 1 then A is irre-

ducible.

Proof. Suppose that ind(A) = 1, then by Lemma (2.7), every nonzero sym-

metric invariant bilinear form on A is nondegenerate. Moreover, since A is a

pseudo-Euclidean alternative algebra, then, (see. [4])

A =

n⊕
i=1

Ii
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New Characterizations of Semisimple Alternative Algebras 111

where for all 1 ≤ i ≤ n, Ii is a nondegenerate irreducible ideal, and for all

i ̸= j, Ii and Ij are orthogonal. If ψ1 denotes the trace form of I1 then the

bilinear form φ on A defined by φ(x, y) = ψ1(x, y) whenever x, y ∈ I1 and

φ(x, y) = 0 otherwise, is a degenerate invariant symmetric bilinear form, which

contradicts the result in Lemma 2.7. Then A is irreducible. □

Proposition 2.11. Let (A,ψ) be a pseudo-Euclidean alternative algebra. If

ind(A) = 1, then A is either a simple alternative algeba or A is the one-

dimensional algebra with zero product.

Proof. By Lemma 2.10 we deduce that A is irreducible. If we assume that A

is neither simple nor the one-dimensional algebra with zero product, then by

Corollary (2.3) and Corollary (3.3) in [3], A is either a double extension of a

pseudo-Euclidean alternative algebra by a simple alternative algebra or a gen-

eralized double extension of a nilpotent pseudo-Euclidean alternative algebra

by the one-dimensional algebra with zero product.

If A is not nilpotent, then A is a double extension of a pseudo-Euclidean
alternative algebra (W, T ) by a simple alternative algebra S. Moreover, if σ is
an invariant symmetric bilinear form on S, then ([3], Theorem 2.1) the bilinear

form ψ̃σ defined by:

ψ̃σ : (S ⊕W ⊕ S∗)× (S ⊕W ⊕ S∗) −→ F,
(x+ y + f, x′ + y′ + f ′) 7−→ σ(x, x′) + ψ(y, y′) + f(x′) + f ′(x),

is an invariant scalar product on A = S ⊕W ⊕S∗. If we consider σ1 the trace

form on S and σ2 = 0, an invariant symmetric bilinear form on S, then ψ̃σ1

and ψ̃σ2
are two linearly independant elements of B(A), which contradicts the

fact that ind(A) = 1.

Now, if A is nilpotent, then, by ([3]. Theorem 3.2 ) A := Fe ⊕ W ⊕ Fb is

the generalized double extension of the pseudo-Euclidean alternative algebra

(W, T ) by the one dimensional alternative algebra Fe with null product. Where,

b ∈ Ann(A)\{0} and e ∈ A such that ψ(b, b) = 0, ψ(e, b) = 1, ψ(e, e) =

0, W := (Fb⊕Fe)⊥ and T := ψ|W×W . Let us consider the invariant symmetric

bilinear form φ on A defined by: φ(b, b) = 1, and φ(x, y) = 0, ∀(x, y) ∈
A×A\Fb× Fb. It is clear that φ and ψ are two linearly independant elements

of B(A). Therefore, ind(A) ⩾ 2, which contradicts the hypothesis ind(A) = 1.

We conclude that if ind(A) = 1, then A is either a simple alternative algebra

or A is the one-dimensional algebra with zero product. □

Corollary 2.12. Let F be an algebraically closed field of characteristic zero and

let (A,ψ) be a pseudo-Euclidean alternative algebra. Then, the two following

assertions are equivalent:

(1) ind(A) = 1
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112 S. Boulmane

(2) A is either a simple alternative algeba or A is the one-dimensional

algebra with zero product.

Recall that an alternative algebra A is said to be reductive if A = S⊕Ann(A)
is a direct sum of a semisimple alternative algebra S and its annulator Ann(A).

Proposition 2.13. Let (A,ψ) be a pseudo-Euclidean alternative algebra and

I1, ..., In, (n ∈ N) be nondegenerate ψ-irreducible ideals of A such that

A =

n⊕
i=1

Ii

and for all i, j ∈ {1, ..., n}, Ii and Ij are ψ-orthogonal for (i ̸= j). Then the

following assertions are equivalent:

(1) ind(A) = n and A2 = A

(2) A is semisimple.

Proof. Assume that A is semisimple, then Ann(A) = {0} and it follows by ([1].

Corollary 9.14) that ind(A) = n, moreover, we have A2 = Ann(A)⊥ = {0}⊥ =

A.

Conversely, suppose that ind(A) = n, then we deduce by ([1]. Corollary

9.14) that A is reductive and dim(Ann(A)) ⩽ 1. Assume that dim(Ann(A)) =

1, then (Fa)⊥ = A2 = A, for a ∈ Ann(A)\{0} which is absurd. It follows that

A is semisimple. □

3. Characterization of semisimple alternative algebras by means

of operator of Casimir

Now, we are going to give a characterization of semi-simple alternative al-

gebras by using an operator of a pseudo-Euclidean alternative algebra called

operator of Casimir type.

Let (A,ψ) be a pseudo-Euclidean alternative algebra of dimension n. We

consider {e1, ., ., .en} and {e′1, ., ., .e′n} two basis of A such that ψ(ei, e
′
j) =

δij , ∀i, j ∈ {1, ..., n}, where δij is Kronecker’s symbol and we denote by Cei,e′i

the operator of A defined by:

Cei,e′i
=

n∑
i=1

ReiRe′i
.

Cei,e′i
is called the operator of Casimir type of the pseudo-Euclidean alternative

algebra (A,ψ).

Lemma 3.1. Let (A,ψ) be a pseudo-Euclidean alternative algebra. Then,

(i): tr(RxRy) = ψ(Cei,e′i
(x), y), ∀x, y ∈ A;

(ii): Cei,e′i
= Cfi,f ′

i
;

(iii): Cei,e′i
◦Rx = Rx ◦ Cei,e′i

, ∀x ∈ A.
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New Characterizations of Semisimple Alternative Algebras 113

Where {f1, ., ., .fn} and {f ′1, ., ., .f ′n} are two basis of A such that ψ(fi, f
′
j) =

δij , ∀i, j ∈ {1, ..., n}.

Proof. (i) For all x, y ∈ A, we have

ψ(Cei,e′i
(x), y) = ψ(

n∑
i=1

ReiRe′i
(x), y) =

n∑
i=1

ψ((xe′i)ei, y) =

n∑
i=1

ψ((eiy)x, e
′
i)

=

n∑
i=1

ψ(RxRy(ei), e
′
i) = tr(RxRy).

(ii) By using (i), it is clear that

tr(RxRy) = ψ(Cei,e′i
(x), y) = ψ(Cfi,f ′

i
(x), y), ∀x, y ∈ A.

Moreover, since ψ is nondegenerate, then Cei,e′i
= Cfi,f ′

i
.

(iii) Let x, a, b ∈ A,

ψ((Cei,e′i
◦Rx −Rx ◦ Cei,e′i

)(a), b) = ψ(Cei,e′i
(ax), b)− ψ(Cei,e′i

)(a), xb)

= tr(RaxRb)− tr(RaRxb)

= tr(RaxRb)− tr(RaxRb)

= 0.

Moreover, since ψ is nondegenerate it follows that Cei,e′i
◦ Rx = Rx ◦ Cei,e′i

.

□

Proposition 3.2. Let (A,ψ) be a pseudo-Euclidean alternative algebra, A is

semisimple if and only if the operateur of Casimir type Cei,e′i
of A is inversible.

Proof. By ([5]. Proposition 3.13) we have A is semisimple if and only if the trace

form on A is nondegenerate. From Lemma (3.1) we deduce that tr(RxRy) =

ψ(Cei,e′i
(x), y), ∀x, y ∈ A, then the trace form on A is nondegenerate if and

only if Cei,e′i
is inversible. Consequently, A is semisimple if and only if the

operateur of Casimir type Cei,e′i
of A is inversible. □

4. Characterization via bi-representations of alternative

algebra

Let A be an alternative algebra and M be a vector space. Then, M is a

bimodule over A in case there are two linear maps π : A→ End(M), Π : A→
End(M) satisfying:

(i) π(a2) = π(a)2,

(ii) Π(a2) = Π(a)2,

(iii) Π(aa′)−Π(a′)Π(a) = [Π(a′), π(a)],

(iv) π(aa′)− π(a)π(a′) = [π(a),Π(a′)],
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114 S. Boulmane

for all a, a′ ∈ A.

The vector space direct sum Ã = A ⊕M is made into an alternative algebra,

by defining multiplication by:

(a+m).(a′ +m′) = aa′ + π(a)m′ +Π(a′)m, (4.1)

for all a, a′ ∈ A et m,m′ ∈M.

(π,Π) is called (bi)-representation of A associated to M .

Consider the bilinear form ψ : A×A→ F defined by ψ(a, b) = tr(π(a)π(b)),

for all a, b ∈ A. In this case, we say that ψ is the bilinear form of A associate

to the bi-representation (π,Π).

In this section we study the structure of A such that ψ is non-degenerate.

Proposition 4.1. Let A be an alternative algebra, M a vector space and (π,Π)

a (bi)-representation of A associated to M . If A is nilpotent then the algebra

Ã = A⊕M defined by the multiplication (4.1) is nilpotent.

Proof. We deduce by the multiplication (4.1) that M is a nilpotent ideal, then

M is contained in the radical Rad(Ã) of Ã. If we suppose that Ã is not

nilpotent, then Rad(Ã) ̸= Ã and according to Wedderburn decomposition, we

have Ã = S⊕Rad(Ã), where S is a semi-simple subalgebra of Ã. Let φ : Ã −→
Ã/M be the canonical surjection, since S ∩M = {0}, then φ : S −→ φ(S)

is an isomorphism of alternative algebras. Consequently φ(S) is semi-simple.

Moreover, A is nilpotent implies that Ã/M is nilpotent. It follows that φ(S)

is also nilpotent, hence Rad(φ(S)) = φ(S) = 0. Therfore, S ⊂ M which

contradicts S ̸= {0}, which completes the proof. □

Corollary 4.2. Let A be an alternative algebra, M a vector space and (π,Π) a

(bi)-representation of A associated to M . If A is nilpotent then π(a) and Π(a)

are nilpotent for all a ∈ A.

Proof. Assume that A is nilpotent, then by Proposition (4.1) the algebra Ã

is nilpotent. Then for all a ∈ A there is an integer r such that ar = 0.

Consequently,

ar.m = m.ar = π(a)r(m) = Π(a)r(m) = 0, ∀m ∈M.

Hence π(a) and Π(a) are nilpotent. □

Remark 4.3. One can deduce that for all integer n,

an.m = π(a)n(m) = π(an)(m) and m.an = Π(a)n(m) = Π(an)(m).

That is, π(a)n = π(an) and Π(a)n = Π(an).

The main result of this section is contained in the following Theorem:
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Theorem 4.4. Let A be an alternative algebra and M be a vector space. Then

the following assertions are equivalent:

(i) A is semi-simple;

(ii) There exists a finite-dimensional bi-representation π : A → End(M),

Π : A → End(M) such that the bilinear form ψ : A × A → F defined

by ψ(a, b) = tr(π(a)π(b)), for all a, b ∈ A is non-degenerate.

Proof. Suppose that A is semi-simple, if we consider (π,Π) = (R,L), where

R(a) = Ra and L(a) = La for all a, b ∈ A, then by ([5]. Proposition 3.13) the

bilinear form ψ : A × A → F defined by ψ(a, b) = tr(RaRb), for all a, b ∈ A is

non-degenerate.

Conversely, Let a ∈ A and r ∈ Rad(A), where Rad(A) is the radical of A.

Since ra ∈ Rad(A) and Rad(A) is nilpotent, then by Corollary (4.2), π(ra) is

nilpotent. It follows that ψ(r, a) = tr(π(r)π(a)) = tr(π(ra)) = 0. Then, r = 0

since ψ is non-degenerate. Which proves that Rad(A) = {0}. Consequently, A
is semi-simple. □
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